3.229 \(\int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\)

Optimal. Leaf size=70 \[ -\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \]

[Out]

arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(1/2)+(a-b)*(a+b*tanh(x)^2)^(1/2)/b^2-1/3*(a+b*tanh(x)^2)^(3/
2)/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3670, 446, 88, 63, 208} \[ -\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^5/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b)*Sqrt[a + b*Tanh[x]^2])/b^2 - (a + b*Tanh[x]^
2)^(3/2)/(3*b^2)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx &=\operatorname {Subst}\left (\int \frac {x^5}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x^2}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {a-b}{b \sqrt {a+b x}}+\frac {1}{(1-x) \sqrt {a+b x}}-\frac {\sqrt {a+b x}}{b}\right ) \, dx,x,\tanh ^2(x)\right )\\ &=\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {\operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}+\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.54, size = 68, normalized size = 0.97 \[ \frac {\text {sech}^2(x) ((a-2 b) \cosh (2 x)+a-b) \sqrt {a+b \tanh ^2(x)}}{3 b^2}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^5/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b + (a - 2*b)*Cosh[2*x])*Sech[x]^2*Sqrt[a + b*T
anh[x]^2])/(3*b^2)

________________________________________________________________________________________

fricas [B]  time = 0.67, size = 2827, normalized size = 40.39 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(3*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2
)*sinh(x)^4 + 3*b^2*cosh(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cos
h(x)^2 + b^2)*sinh(x)^2 + b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(a + b)*log(((a
^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x
)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^
2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*
a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^
2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3
 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b -
 b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)
^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x
))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*s
inh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*
sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
+ 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*
a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^
3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 3*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*si
nh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^2*cosh(x)^2 + 4*(5*b^2*c
osh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh(x)^2 + b^2 + 6*(b^2*cos
h(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(
x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh
(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*c
osh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(
x) + sinh(x)^2)) + 8*sqrt(2)*((a^2 - a*b - 2*b^2)*cosh(x)^4 + 4*(a^2 - a*b - 2*b^2)*cosh(x)*sinh(x)^3 + (a^2 -
 a*b - 2*b^2)*sinh(x)^4 + 2*(a^2 - b^2)*cosh(x)^2 + 2*(3*(a^2 - a*b - 2*b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2
+ a^2 - a*b - 2*b^2 + 4*((a^2 - a*b - 2*b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2
 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^
2 + b^3)*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + 3*(a*b^2 + b^3)*cosh(x)^4 + 3*(a*b^2 + b^3 + 5*(a*b^2 +
 b^3)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 +
 3*(a*b^2 + b^3)*cosh(x)^2 + 3*(5*(a*b^2 + b^3)*cosh(x)^4 + a*b^2 + b^3 + 6*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2
 + 6*((a*b^2 + b^3)*cosh(x)^5 + 2*(a*b^2 + b^3)*cosh(x)^3 + (a*b^2 + b^3)*cosh(x))*sinh(x)), -1/6*(3*(b^2*cosh
(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^
2*cosh(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh
(x)^2 + b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x
)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a
- b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (
a^2 + a*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2
 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + 3*(b^2*cosh(x)^6
+ 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^2*cosh
(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh(x)^2
+ b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*
cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2
- 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a
- b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) +
 a + b)) - 4*sqrt(2)*((a^2 - a*b - 2*b^2)*cosh(x)^4 + 4*(a^2 - a*b - 2*b^2)*cosh(x)*sinh(x)^3 + (a^2 - a*b - 2
*b^2)*sinh(x)^4 + 2*(a^2 - b^2)*cosh(x)^2 + 2*(3*(a^2 - a*b - 2*b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2 + a^2 -
a*b - 2*b^2 + 4*((a^2 - a*b - 2*b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2 + (a +
b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)
*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + 3*(a*b^2 + b^3)*cosh(x)^4 + 3*(a*b^2 + b^3 + 5*(a*b^2 + b^3)*co
sh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + 3*(a*b^
2 + b^3)*cosh(x)^2 + 3*(5*(a*b^2 + b^3)*cosh(x)^4 + a*b^2 + b^3 + 6*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + 6*((a
*b^2 + b^3)*cosh(x)^5 + 2*(a*b^2 + b^3)*cosh(x)^3 + (a*b^2 + b^3)*cosh(x))*sinh(x))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep+1)]Evaluation time: 0.99Error: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.11, size = 164, normalized size = 2.34 \[ -\frac {\left (\tanh ^{2}\relax (x )\right ) \sqrt {a +b \left (\tanh ^{2}\relax (x )\right )}}{3 b}+\frac {2 a \sqrt {a +b \left (\tanh ^{2}\relax (x )\right )}}{3 b^{2}}-\frac {\sqrt {a +b \left (\tanh ^{2}\relax (x )\right )}}{b}+\frac {\ln \left (\frac {2 a +2 b +2 \left (\tanh \relax (x )-1\right ) b +2 \sqrt {a +b}\, \sqrt {\left (\tanh \relax (x )-1\right )^{2} b +2 \left (\tanh \relax (x )-1\right ) b +a +b}}{\tanh \relax (x )-1}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 \left (1+\tanh \relax (x )\right ) b +2 \sqrt {a +b}\, \sqrt {\left (1+\tanh \relax (x )\right )^{2} b -2 \left (1+\tanh \relax (x )\right ) b +a +b}}{1+\tanh \relax (x )}\right )}{2 \sqrt {a +b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x)

[Out]

-1/3*tanh(x)^2/b*(a+b*tanh(x)^2)^(1/2)+2/3*a/b^2*(a+b*tanh(x)^2)^(1/2)-(a+b*tanh(x)^2)^(1/2)/b+1/2/(a+b)^(1/2)
*ln((2*a+2*b+2*(tanh(x)-1)*b+2*(a+b)^(1/2)*((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2))/(tanh(x)-1))+1/2/(a+b)
^(1/2)*ln((2*a+2*b-2*(1+tanh(x))*b+2*(a+b)^(1/2)*((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2))/(1+tanh(x)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh \relax (x)^{5}}{\sqrt {b \tanh \relax (x)^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^5/sqrt(b*tanh(x)^2 + a), x)

________________________________________________________________________________________

mupad [B]  time = 2.17, size = 65, normalized size = 0.93 \[ \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tanh}\relax (x)}^2+a}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {{\left (b\,{\mathrm {tanh}\relax (x)}^2+a\right )}^{3/2}}{3\,b^2}-\left (\frac {a+b}{b^2}-\frac {2\,a}{b^2}\right )\,\sqrt {b\,{\mathrm {tanh}\relax (x)}^2+a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^5/(a + b*tanh(x)^2)^(1/2),x)

[Out]

atanh((a + b*tanh(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(1/2) - (a + b*tanh(x)^2)^(3/2)/(3*b^2) - ((a + b)/b^2 -
(2*a)/b^2)*(a + b*tanh(x)^2)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh ^{5}{\relax (x )}}{\sqrt {a + b \tanh ^{2}{\relax (x )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**5/(a+b*tanh(x)**2)**(1/2),x)

[Out]

Integral(tanh(x)**5/sqrt(a + b*tanh(x)**2), x)

________________________________________________________________________________________